Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 256(Pt 1): 128363, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000612

RESUMO

The cationic methylene blue (MB) dye sequestration was studied by using oxidized carboxymethyl cellulose-chitosan (OCMC-CS) and its composite films with silicon carbide (OCMC-CS-SiC), and silica-coated SiC nanoparticles (OCMC-CS-SiC@SiO2). The resulting composite films were characterized through various analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDS). The dye adsorption properties of the synthesized composite films were comprehensively investigated in batch experiments and the effect of parameters such as contact time, initial dye concentration, catalyst dosages, temperature, and pH were systematically evaluated. The results indicated that the film's adsorption efficiency was increased by increasing the contact time, catalyst amount, and temperature, and with a decreased initial concentration of dye solution. The adsorption efficiency was highest at neutral pH. The experimental results demonstrated that OCMC-CS films have high dye adsorption capabilities as compared to OCMC-CS-SiC, and OCMC-CS-SiC@SiO2. Additionally, the desorption investigation suggested that the adsorbents are successfully regenerated. Overall, this study contributes to the development of sustainable and effective adsorbent materials for dye removal applications. These films present a promising and environmentally friendly approach to mitigate dye pollution from aqueous systems.


Assuntos
Celulose Oxidada , Quitosana , Nanopartículas , Poluentes Químicos da Água , Quitosana/química , Azul de Metileno/química , Carboximetilcelulose Sódica/química , Dióxido de Silício , Celulose , Adsorção , Corantes/química , Poluentes Químicos da Água/química , Cinética , Nanopartículas/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Drug Dev Ind Pharm ; 47(2): 302-307, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33492999

RESUMO

Amorphization is a well-established strategy to enhance the dissolution properties of poorly water-soluble drugs. However, the amorphous state is inherently unstable toward recrystallization. Coamorphous systems of a drug and a small-molecule excipient or of two complementary drugs often show an enhanced stability. Diabetes and hypertension are frequently coexistent. In this paper a study on the coamorphization of the poorly water-soluble antidiabetic drug gliclazide (glz) and the antihypertensive drug valsartan (val) is reported. Amorphous glz recrystallized after 1 d under ambient conditions, whereas coamorphous glz-val containing glz and val in a 1:1 or 1:2 molar ratio was stable for at least four months at 20 °C and 56% relative humidity. The dissolution rate of glz increased in the order crystalline glz < glz-val_1:1 < glz-val_1:2. Furthermore, ternary coamorphous systems of glz, val and an excipient were prepared; glz-val_1:1_PVP, glz-val_1:1_HPC, glz-val_1:1_ALM, glz-val_1:1_MCC (PVP = polyvinylpyrrolidone, HPC = hydroxypropyl cellulose, ALM = α-lactose monohydrate, MCC = microcrystalline cellulose). MCC and HPC did not affect the stability of the coamorphous system, while ALM promoted the recrystallization of glz in glz-val_1:1_ALM during storage and freshly prepared glz-val_1:1_PVP contained small amounts of crystalline glz. Glz-val_1:1_MCC showed enhanced dissolution properties compared to crystalline glz and glz-val_1:1 and is a viable fixed-dose formulation.


Assuntos
Gliclazida , Valsartana/química , Estabilidade de Medicamentos , Excipientes , Solubilidade , Valsartana/farmacologia
3.
Int J Pharm ; 561: 35-42, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30802549

RESUMO

The antidiabetic drug gliclazide (GLZ) has a slow absorption rate and a low bioavailability due to its poor solubility. GLZ is often prescribed along with an antihypertensive, as many diabetic patients have coexistent hypertension. Cocrystallization and coamorphization are attractive strategies to enhance dissolution rates and to reduce the number of medications a patient has to take. In this work the formation of cocrystals and coamorphous systems of GLZ with various antihypertensive drugs was studied, namely chlorothiazide (CTZ), hydrochlorothiazide (HTZ), indapamide (IND), triamterene (TRI) and nifedipine (NIF) as well as benzamidine (BZA) as a model for the amidine pharmacophore. TRI, IND and HTZ were found to form coamorphous systems with GLZ that are stable for at least six months at 22 ±â€¯2 °C and 56% relative humidity. Coamorphous GLZ-TRI is also stable in dissolution medium. Coamorphization of GLZ-TRI with 15% sodium taurocholate gave a viable coamorphous formulation with an enhanced dissolution rate. Comilling of GLZ with BZA and cocrystallization from solution gave the amorphous and crystalline salt, respectively and the X-ray structure is reported. During attempts to obtain X-ray suitable cocrystals crystals of Na+GLZ- and IND 0.5H2O were obtained. Redetermination of the published structure of IND 0.5H2O revealed a unit cell with the length of the a axis doubled, a different space group and no disorder. Liquid-assisted grinding of a 1:1 mixture of GLZ and IND indicated the transformation of IND to a new solid-state form, while GLZ remained unaltered. Milling- and heating-induced solid-state transformations of IND are discussed.


Assuntos
Anti-Hipertensivos/química , Cristalização , Portadores de Fármacos/química , Gliclazida/química , Cristalografia por Raios X , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Ácido Taurocólico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...